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The Finite Element method is combined with a Statistical Energy Analysis-like (SEAL)
energy flow balance to derive the power transmission between two thin plates. A
fundamental difference between SEA and the SEAL procedure is that the former is applied
to ensembles, while the latter addresses the individual case. Energy Flow Coefficients
(EFCs) are derived and explicit use of the non-resonant part of the kinetic energy is made.
It is demonstrated that the EFC, as opposed to the SEA Coupling Loss Factor (CLF), can
become negative at some frequencies. The EFC exhibits characteristics that are individual
for each case examined, although it tends towards the CLF at high frequencies. It is also
shown that the SEAL energy flow balance can be used for narrow bands, and at any
frequency.
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1. INTRODUCTION

Energy flow methods such as Statistical Energy Analysis (SEA) [1] and the Statistical
Energy Method (SEM) [2] are today widely used and there are numerous examples of
successful applications. SEA and SEM are used predominantly at high frequency: i.e., at
frequencies at which the subsystem size is large in comparison with the wavelength. Basic
to these techniques is that the energy flow within a system can be related to the difference
in vibrational energy between parts of the system. Various types of energy transmission
factors that can be used to describe the size of this energy flow exist; notable among them
are the Coupling Loss Factor, the Energy Conductance and the Transmission Factor, as
defined in references [1–3], respectively. However, a strict experimental derivation of these
factors can be difficult, owing to conditions intrinsic in their definition: e.g., that they relate
to systems of infinite size [3] or that they apply for ensembles [1, 2]. The applicability of
the factors in predicting the flow of energy in an individual engineering structure can also
be limited, especially at low frequency, as the assumptions on which they are based break
down. Therefore, alternative approaches that do not suffer from such limitations are of
interest.

Traditional use of the Finite Element (FE) method for dynamic analysis of mechanical
structures is typically found for low frequencies with only a few modes included in the
analysis. Restrictions in the use of the FE method are often imposed by computational
expense for analysis at high frequencies, where a dense FE mesh is necessary to resolve
the response and where the high frequency limit is dependent on the system’s size and
complexity. On the other hand, SEA is restricted: (i) to high frequency applications, as
assumptions concerning uniformity of the energy density in the response field break down
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at low frequency; (ii) from lack of appropriate coupling data, and sometimes also because
the source spectrum is not suitable, e.g., is concentrated to narrow bands or has sharp
peaks. Both the FE and SEA methods have been successfully applied to various tasks;
however, several engineering problems do not clearly fall within the individual method’s
domain of application. Creating a deterministic model for some parts of the structure and
combining it with a statistical model for the other parts is thus appealing. Coupling factors
can be generated for parts of the energy flow model that are not amenable to traditional
analysis or for the purpose of analyzing regions where SEA provides a poor estimate. In
the above mentioned approach, detailed analysis is carried out only for some regions of
the system, which consequently allows the FE analysis to be applied for higher frequencies
for the investigated parts than for the complete system.

The focus here is on examining the use of an energy flow balance for the individual case,
exploiting the philosophy and formalism in SEA rather than applying its underlying
assumptions and rules in the process of analysis. Differences between this approach and
SEA are emphasized in order to demonstrate assumptions that can be used for the
ensemble but not for the single specimen, as the individual case normally differs from the
mean in an ensemble of cases. Clarifying such diversities can be seen as a step toward the
above mentioned combined use of SEA and the FE method. This paper addresses the issue
of how the deterministic part of such a model can be treated with the FE method.

Use of the FE method in generating coupling data is appealing because of its versatility
when applied to systems of finite size, which was foreseen by Lyon in reference [1].
Combining the SEA philosophy with results from FE computations offers more of a
‘‘D’Alembertian approach’’ to the derivation of energy flow than do intensity or mobility
methods, in the sense that detailed information about the interaction between subsystems
is not explicitly used. Post-processing the FE-computed data is simple when scalar
quantities such as power and subsystem energies are used, as they do not require explicit
information concerning the co-ordinate system.

Use of the FE method for determining the energy flow is not new, however, and several
approaches have been used: e.g., Power Flow Finite Elements (PFFEM) [4–6],
FE-computed transmission coefficients [7, 8], mobility power flow [9] and structural
intensity [10, 11]. In the PFFEM approach in references [4–6] the coupling data is used
as input to the analysis and thus cannot be used for deriving the coupling factors. In the
approaches in references [7, 8] the FE method is used to derive transmission factors in a
way similar to the traditional wave analysis in reference [3]. The concept of computing the
transmission coefficient is appealing and allows the output to be used in SEA, although
the approach seems to have been applied for beam structures only. The approaches in
references [9–11] are based on intensity or mobility, i.e., vector information in which the
spatial derivatives of the displacement are used (e.g., transverse force and moment). A less
dense mesh and fewer modes in the modal summation better suffice for the current
approach than for the mobility or structural intensity approaches, as it only involves use
of displacements, (and rotations), and not its higher derivatives. Higher derivatives require
a more precise FE model to converge to the same accuracy as the displacements, as was
shown in reference [10]. An elegant means to reduce the error from modal truncation by
use of the static solution in the computation of structural intensity was also presented in
reference [10] for the case of point excitation. A modal basis produces results that converge
for the complete system, but not necessarily for the local point, and thus subsystem energy
is likely to be less affected by use of the modal basis than are mobility or structural
intensity. Derivation of FE-computed coupling factors with SEAL approaches can be
found in, e.g., references [12–14]. Approaches in which analytical models have been used
to test SEA also exist; see, e.g., references [15–20].
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Energy flow is derived in this presentation with a commercial FE code for a thin
L-shaped plate and an example is presented of the possibility for using an energy flow
model at low frequency. The FE model is validated for two separate cases. Measurements
are used for the case of point excitation and free-free boundaries. An analytical model
[12, 15, 16], based on thin plate theory, is used for comparison with the case of
rain-on-the-roof excitation and simply supported boundaries.

2. THE FINITE ELEMENT MODEL

The example consists of two rectangular Perspex plates. Figure 1(a) shows the FE
realization of the plates, dimensioned to have at least three elements per free bending
wavelength, i.e., seven nodes per wavelength [21, 22], and with 189 eight node quadrilateral
shell elements (S8R) with six degrees of freedom per node and the aspect ratio 1·1. This
criterion gives an upper frequency limit for the FE mesh of approximately 1350 Hz and
a total size of 3816 d.o.f. for the FE model, solved by using ABAQUS Version 4.9.

The experimental set-up and a measurement position are shown in Figure 1(b).
Rain-on-the-roof excitation and simply supported boundary conditions are difficult to
achieve in practice and thus experimental verification of the FE model is instead performed
for point excitation with free-free boundary conditions. The L-plate was suspended from
the ceiling by thin strings to approximate the free-free boundary conditions, and the
rotational acceleration on both sides of the joint was measured and compared to ensure
that the (glued) joint was sufficiently rigid in the frequency range considered. The force
transducer was positioned directly on the exciter to reduce the loading of its rotational
inertia on the measurement object as it was found to be significant for frequencies above
400 Hz. The stinger was designed according to reference [23] to avoid stinger rod
resonances in the measured frequency range. Point mobilities were measured, and the
critical damping ratio per mode was derived with circle-fitting and found to vary between
3% at low frequency and 1% at high frequency. For simplicity, a critical damping ratio
of 2% is used for all modes in the following analysis.

Figure 1. The investigated L-shaped plate. Dimensions are as follows: lengths, 0·39 m for the junction, 0·5 m
for the smaller plate, 1·0 m for the larger plate; the thickness is 0·01 m for both plates. Material data are Young’s
modulus 4·9×109 N/m2, Poisson ratio 0·25, density 1180 kg/m3. For the critical damping ratio, z, 2×10−2 was
used as the modal damping factor. (b) The measurement set-up. The signals were processed with a GenRad 2515
FFT analyzer. Other measurement equipment used was force transducer B&K 8200, accelerometer B&K 4393,
rotational accelerometer, Kistler Translational-Angular Transducer 8832 TAP system, charge amplifier B&K
2635, and B&K mini-shaker 4810.
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Figure 2. The number of eigenfrequencies for the simply supported case: ——, uncoupled plates, analytical
model; – –, FE-computed, coupled and uncoupled plates; –·–, uncoupled plates, asymptotic modal density in
equation (1). A total of four and two false (zero energy) modes are removed from the FE-computed uncoupled
large and small plate eigenfrequency plots, respectively.

As a first analysis step, the FE computed modal count was examined to discover whether
the FE computed modal count could help yield an improved estimate of the modal density.
Modal density is a concept that is asymptotically derived from the modal count and,
strictly speaking, is valid only when a large number of eigenmodes is included in the
summation of the modal count [24, 25]. The asymptotic modal density, nj , for a thin plate
is [26]

nj =(Aj/hj)z3rj(1− n2
j )/Yj , (1)

where the plate area is Aj , the plate thickness is hj , Young’s modulus is Yj , the density is
rj and the Poisson ratio is nj .

Figure 2 shows that the asymptotic modal densities in equation (1) can be used to
produce reasonable estimates of the modal counts for the frequency range considered and
that the FE and analytical eigenfrequencies compare. However, Bolt has cautioned in
reference [24] that the asymptotic distribution of eigenfrequencies applies only at high
frequency, and that this limitation should be investigated for acoustical problems ‘‘where
the dimensions of the apparatus and enclosures are often of the same order of magnitude
as the wavelengths’’. Therefore, as few modes are included in the actual modal count at
low frequency, no significant improvement in computing the modal density, e.g., by
frequency band averaging the modal counts for the local subsystems, is expected when
using the FE- or analytically-derived modal counts. As a consequence, the concept of
asymptotic modal density is believed to be about as accurate for the L-shaped plate as is
feasible to expect when applied to the individual case.

As a second analysis step, the FE model was verified by comparison with measurements.
Ninety modes with eigenfrequencies up to 1341 Hz are included and the Steady State
Dynamics option in ABAQUS [27] was used for the response summations. The agreement
between the FE-computed and measured mobilities in Figure 3 is similar to that for other
positions. Also, the case examined was verified by comparisons with an analytical model.
Rain-on-the-roof excitation is approximated in the FE model by uncorrelated forces acting
at every node in the respective subsystems. Sixty-one modes were incorporated in the
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Figure 3. Magnitude of the driving point mobility at one of the free corners of the smaller plate: ——,
measured; – –, FE computed.

response summation, with four modes outside the highest frequency 1300 Hz. The
Random Response option in ABAQUS [27] was used to save computational time, as 651
separate computations with the Steady State Dynamics option would otherwise have been
required to yield identical results. In the analytical model, modes with a free bending
wavelength down to half the free bending wavelength at 1300 Hz were included in the
response summation to reduce errors from modal truncation; i.e., modes with
eigenfrequencies up to 5·2 kHz are included. Theory for the simple bending wave is
applicable up to 10 kHz. Figure 4 shows the FE-computed and analytically derived kinetic
energy for the case of simply supported boundaries and rain-on-the-roof excitation in the

Figure 4. Kinetic energy for the smaller plate, R11 · S1: ——, analytical model; – –, FE computed; –·–,
SEA-computed.
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smaller plate. An example of the SEA-computed result is also included in the figure for
comparison. The agreement for the case displayed is typical for that of other cases.

Figure 3 shows that the FE-computed mobilities are shifted downwards in frequency
as compared with the experimental mobilities, with similar trends exhibited for the kinetic
energies in Figure 4. This shift is likely to be caused by the reduced number of Gauss points
in the finite elements (reduced integration) that may become overly weak [28]. Thus, the
FE model is expected to produce a reasonable overall estimate of the vibrational behaviour
for the L-shaped plate for various cases of boundary conditions and excitation, with good
agreement at low frequencies and a downward trending shift at higher frequencies.

3. THE APPROACH

The energy flow is derived by combining an energy flow balance with FE computed data
for the individual system. Note that a multitude of deterministic cases can be used to form
an ensemble that, when sufficiently varied, provides the SEA ensemble’s average coupling
data. However, the individual case provides coupling data that typically differ from the
mean value of the SEA ensemble, much in the same way that the election outcome of a
community is not forecast by interviewing a single voter. This fundamental distinction
between the individual and the ensemble should be considered in the derivation of coupling
data and is stressed in the presentation below.

In this presentation, coupling data are derived in a way that in some aspects resembles
procedures previously applied experimentally: e.g., the procedure in reference [29]. The
term SEA-like is adopted to distinguish between SEA and the use of the energy flow
balance for the individual case: i.e., to avoid confusing the statistic with the deterministic
approach. Notations commonly used in SEA are applied in the energy flow model because
of their familiarity and for convenience. Note that coefficients in the SEAL approach do
not have exactly the same definitions as in SEA, even if they are used in a similar way.
According to the distinction made in reference [30], the name Energy Flow Coefficient
(EFC) is used when the deterministic approach is used and to distinguish it from the
Coupling Loss Factor (CLF) as used in SEA. Similarly, the function necessary for energy
flow reciprocity to exist is termed the reciprocity function in order not to confuse it with
its SEA equivalent, the modal density ratio.

The individual case differs from what is predicted by SEA since its dynamic behaviour
is influenced by features that are omitted in the SEA model: e.g., the distribution of natural
frequencies, mode shapes etc. To identify such features, some assumptions in SEA should
be considered; e.g.: (i) the non-resonant part of the subsystem energy that is provided by
modes with eigenfrequencies outside the analysed frequency band is neglected; (ii)
similarly, the total energy of a mode is assumed to be within the frequency band that is
analyzed; (iii) the energy density should be constant over the subsystem; (iv) the source
of excitation should be random in space and time and have a constant power spectral
density; (v) the modal energies in the energy in the frequency band are considered to be
incoherent to allow addition of their energy. Assumptions (i)–(v) are equivalent to
replacing mode k’s energy content, 2DeSjMk(Mkvkhk)−2, with the frequency spectral density
for the modal energy, 2SjMk(Mkvkhk)−2, in the equivalent bandwidth, De = pfkhk/2, and
assuming the subsystem energy to equal the energy provided by the (local) modes that lie
within the frequency band [1]. The oscillator’s physical mass is Mk , the damping hk ,
eigenfrequency vk , and the power spectral density of the force amplitude is Sj . Figure 5(a)
shows the response for a single mode and the mode’s total energy that is within the
equivalent bandwidth. The non-resonant part of the mode’s energy that in reality falls
outside the equivalent band, De , is often small when broad-band sources and frequency
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Figure 5. (a) The response of a single mode subjected to white random noise: ——, the frequency spectral
density of the mode’s kinetic energy; – –, the frequency spectral density of the modal energy in the equivalent
band. (b) The response of a subsystem and the SEA realization for the frequency band: –·–, frequency spectral
density of the deterministic subsystem response; ——, frequency band integrated deterministic subsystem
response; ––, subsystem response estimated by use of the (deterministic) modal count and the energy per mode.

bands containing several modes are considered. Its influence on the subsystem response
can therefore often be suppressed when the two-subsystem case is examined. Figure 5(b)
shows a case in which several modes are present. The frequency band integrated subsystem
response is seen to be well described at most frequencies by the incoherent modal
oscillators and the modal count. The dynamic features of the narrow band response,
however are seen to be strongly influenced by non-resonant features at low frequency,
although the non-resonant part of the subsystem energy contributes very little to the total
energy of the frequency band. Therefore, there exist situations in which non-resonant
features of a subsystem can dominate its dynamic behaviour, although the non-resonant
part of the energy is barely noticeable for the frequency band. Examples of situations in
which non-resonant features can dominate the dynamic behaviour are the following:
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sources having a narrow band character; a non-uniform spectrum; forced excitation of
systems with a low modal overlap. Another cause for deviation between the individual case
and SEA is the assumption of spatially uncorrelated driving of uniform amplitude
(rain-on-the-roof) which is biased if excitation acts at one or a few points. Therefore, when
computing the response with conventional SEA, the degree of approximation for the
individual case can be expected to depend on the type and magnitude of damping, the
eigenfrequency separation, source position, the number of modes situated in the frequency
band, and the source’s frequency spectrum.

When accounted for in SEA, non-resonant transmission mechanisms are included in the
power input or as conservative transmission paths in the power balance. Examples of these
mechanisms are the well-known mass law for sound transmission between rooms, and
exciting a structure through a stiff component attached to the structure. The former
example includes non-resonant transmission between the rooms, and the latter case is
treated as a power input that fits the non-resonant transmission characteristics in the stiff
component. However, the non-resonant part of the kinetic energy is never explicitly used
and thus the wall or stiff component cannot be regarded as a separate subsystem in SEA.
A modal description of decaying fields require that many modes are included in the
summation. Most of these modes do not have their natural frequency in the vicinity of
the frequency of interest. Another example of a non-resonant transmission mechanism is
therefore the near field that exists near the source and at the junction. When using
FE-computed or measured data, where the non-resonant part of the kinetic energy is
automatically included, a SEAL is formed where the non-resonant transmission
mechanisms are directly incorporated. As a consequence, coupling data and the energy
flow balance for the individual case should not necessarily be treated or interpreted in line
with conventional SEA theory, in which such features are omitted.

Several procedures for determination of coupling data from the two subsystem
configuration exist in the literature. An alternative approach that can be used for the
individual case has been suggested in references [16, 17]. The subsystem energy and the
energy flow can be described as a function of the excitation of amplitude Sj , as

6E1

E27=$R11

R21

R12

R22% 6S1

S27, and P1:2 = [P21 P12] 6S1

S27, (2, 3)

respectively. The vector {Ej} and P1:2, respectively, denote the subsystems’ time average
kinetic energy and time average active energy flow in the direction from subsystem 1 to
subsystem 2. These are generated by the excitation Sj that is uncorrelated between
subsystems i and j. The subsystem coefficients for the energy flow to subsystem i and the
energy in subsystem i caused by the excitation in subsystem j are denoted Pij and Rij ,
respectively.

Combining equation (2) with equation (3) provides the energy flow balance for the two
subsystem configurations:

P1:2 = [P21 P12]$R11 R12

R21 R22%
−1

6E1

E27=v[h12 −h21] 6E1

E27, (4)

where v is the angular frequency and the matrix [h] represents the EFCs.
It is noted that the above formulation for constructing energy flow models is automatic

and places the couplings at the correct position in the matrix. It is observed as well that
the number of co-ordinates necessary to describe the energy flow with the FE model has
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been reduced, from 3816-degrees-of-freedom or 61 modes, to four co-ordinates. It should
be noted, however, that in equation (4) the actual flow of energy and subsystem energy
are used as input data to the energy flow balance when deriving the EFCs: i.e., the actual
energy flows and responses must be known before the EFCs can be assessed. Thus, the
EFCs are not necessary to predict the energy flow, (P1:2), in the FE model unless it is
sought from information about the total subsystem energies (E1 and E2) when excitations
S1 and S2 act simultaneously in the subsystems. Therefore, the reasons for proceeding with
the EFCs are the possibility of incorporating the deterministic model with a statistical one
into a hybrid energy flow model for further processing, to yield data for configurations
that are difficult to analyze by other means, and to judge at what frequency the
deterministic approach can be shifted to a statistical one for gains in time- and
cost-effectiveness. Furthermore, it can be noted that equation (4) is independent of
requirements regarding the power spectral density for the excitations: i.e., it applies for
narrow bands as well as for wider frequency bands and for sources located at one or a
few positions. Using equation (4) for narrow bands allows the derivation of coupling data
for steady state sources with any spectrum as long as the sources are independent between
subsystems. Applying equation (4) for the wider frequency band requires the source’s
power spectral density to be constant in frequency.

The subsystem’s kinetic energies are approximated as

E=
v2

2
s
N

k=1

mkû2
k (5)

from the FE-computed data. The mass mk and the nodal displacement ûk refer to node
k in the FE model: i.e., the influence from the rotational degrees of freedom is assumed
negligible.

The energy flow equals the power dissipated in the plates: i.e.,

P12 =vhd,1R12 1 2vz1R12 and P21 =vhd,2R21 1 2vz2R21. (6a, b)

The respective loss factors that relate to kinetic energy and the critical damping ratio in
subsystem j are denoted hd,j and zj .

The simplified loss factor in the RHS of equations (6a, b) is not necessary, in principle,
as the dissipated power can be assessed from separate post-processing of the modal data;
it is, however, justified from a practical point of view, as ABAQUS does not provide the
dissipated power as output. No such assumptions are made in the analytical model and
the explicit energy flow is used for comparison. Also, note that hd,j , hj and zj have different
definitions. The loss factor that relates to kinetic energy, hd,j , is defined by equations (6a, b).
The dissipation loss factor hj , as used in SEA, has a similar definition and applies for a
group of modes of equal amplitudes in a frequency band. The critical damping ratio, zj ,
depends on the modal number. The loss factors, hd,j , and zj , relate to a good approximation
to hd,j =2zj at the eigenfrequencies. The dissipation loss factor, hj =2zj , applies for
frequency bands in which the critical damping ratio is independent from the mode number.
Figure 6 shows that the approximation in equations (6a, b) is reasonable at frequencies
higher than the first (local) eigenfrequency in the subsystem. Further, the closest agreement
between the actual and assumed loss factors in Figure 6 is, as expected, at the
eigenfrequencies. The discrepancy between the loss factors increases with the distance in
frequency from the closest (local) eigenfrequency. Thus, frequencies well below the first
(local) eigenfrequency and cases with small modal overlap should be included in the
analysis only if the dissipated power is explicitly evaluated.
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Figure 6. Loss factors referring to kinetic energy in equations (3a, b): ——, hd,1, analytical model; – –, hd,2,
analytical model; –·–, 2z1, the approximate loss factor.

4. RESULTS

4.1.  

The energy flow is obtained by using

P1:2 =vh12E2(E1/E2 − h21/h12). (7)

Equation (7) yields the energy flow P1:2 in Figure 7.
For clarity, the manner in which equation (7) is utilized for discrete frequencies and the

single case is only SEA-like. A similar equation is normally applied for the frequency band
in SEA when applied to the single case. Alternatively, the equation can be applied at a

Figure 7. Energy flow, P1:2, across the junction when exciting in the larger plate, equation (9): ——, analytical
model; – –, FE-computed; –·–, SEA-computed.
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discrete frequency for the SEA ensemble. The frequency band version is applied under the
assumption that frequency band averaging is equivalent with ensemble averaging. Such
assumptions are not made here, and thus the distinction of SEAL.

As expected, Figure 7 shows that energy flows from the excited subsystem to the receiver
subsystem and demonstrates that a deterministic energy flow model can be used at any
frequency. A good agreement exists between the FE- and analytically-derived energy flows,
and it is concluded that the FE model, combined with a SEAL approach, yields a useful
estimate for the power transmission between the two plates. The SEA-computed energy
flow, as expected, is seen to be useful for the individual case at high frequency.

The variation in magnitude for the energy flow is reduced with increasing modal overlap
[19, 20, 31]. The modal overlap is

M= fhjnj . (8)

where f denotes frequency, hj is the dissipation loss factor as used in SEA and nj denotes
the asymptotic modal density per Hz in subsystem j.

SEA, in its traditional form, is considered to provide results that diverge systematically
and with an increased degree of uncertainty for frequencies at which the modal overlap
is low [19, 20, 31]. For the case investigated, the modal overlap is unity at 1560 Hz for the
smaller plate and at 780 Hz for the larger plate. The geometric mean of the subsystems’
modal overlap [19] is unity at 1100 Hz. Therefore, SEA is expected to produce an estimate
of the coupling data, responses and energy flow that improves in similarity to the examined
case as the frequency increases.

4.2.       

The CLF is [26]

hij = cgiLtij/pvAi , (9)

where cgi is the group velocity for free bending waves in subsystem i, L is the junction
length, Ai is the area of subsystem i and tij is the transmission factor for transfer of power
from subsystem i to subsystem j. The transmission factor 0·3 is used for all examples in
this paper. The use of the transmission factor either for normal incidence (0·5) [26] or for
diffuse incidence (0·3) [26] is felt to be rather arbitrary, as the incidence angle is neither
normal nor diffuse and the weighting function for the incidence should not be uniform
(diffuse) for the individual case. Furthermore, the above transmission factor accounts only
for resonant transmission, something which may bias its estimate for the individual case.
The negative values of the EFCs in Figure 8 clearly demonstrate that measured or
computed results for the individual case should not be treated as, or interpreted in-line
with conventional SEA theory.

The EFCs in Figure 8 tend, as expected, towards the CLF at high frequency and
can be used to determine the case in which the approach can be changed from
deterministic to SEA. A considerable deviation between the EFCs and the CLF is
exhibited at low frequency, where the assumptions of free waves between resonance
frequencies and uniform energy density in the subsystems become obscure. It is also
observed that the EFC can be negative at some frequencies. A comparison between Figures
7 and 8 shows that the negative values for the EFC coincide with the largest peaks in the
energy flow for the individual case. Therefore, the phenomenon that produces the negative
values for the EFCs cannot be insignificant and motivates closer inspection. Note that
negative EFCs, as opposed to negative CLFs in SEA, do not mean that energy flows in
a direction towards its source or that the flow is of infinite magnitude. However, it does
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Figure 8. Coupling coefficients for the simply supported L-shaped plate, h12: ——, EFC, analytical model; – –,
EFC, FE-computed; –·–, CLF as used in SEA, equation (6); × ×, negative values.

imply that energy can flow from one subsystem with quite a small amount of kinetic energy
density to another with a large amount of kinetic energy density.

Furthermore, one should be cautious about relying on analogies to the energy per
uncoupled mode, as the current approach refers to coupled systems and, thus global
modes. The correlation between an infinite number of uncoupled modes from both
subsystems is required to represent a coupled mode. The concept energy per uncoupled
mode case can be a poor descriptor when the case is strongly coupled and the response
is clearly characterized by the shape of one or a few global (coupled) modes. The concept
of uncorrelated uncoupled modes and the number of uncoupled modes can thus be a poor
approximation of the coupled subsystem energy when coupling is strong.

In SEA, reciprocity for the flow of energy between two subsystems is

h12n1 = h21n2. (10)

In the SEAL approach, the ratio between the EFCs defines the actual function for energy
flow reciprocity, and explicit use of modal density is not made. Figure 9(a) shows that the
reciprocity function tends towards the asymptotic modal density ratio at high frequency.

Figures 7, 8(b), 9(b), equations (2) and (9) reveal that the EFCs are negative when

R11/R21 Q h21/h12 QR12/R22 (11a)

and ambiguously defined or of infinite magnitude when

R11/R21 =R12/R22 = h21/h12: (11b)

i.e., when the [R] matrix in equation (2) is singular. Combining equation (7) with equation
(11b) shows that a coupling of infinite magnitude is multiplied with a difference of zero.
Therefore, as is depicted in Figure 7, energy flows from the excited subsystem to the
receiver subsystem when the EFCs are negative and at finite amplitude when the [R] matrix
is singular. In conventional SEA, equation (11b) would imply equipartition of modal
energy and that the energy flow would be zero. This is clearly not the case, and again it
is observed that the individual case differs from what applies from the SEA ensemble. The
existence of flow of energy in the direction from low to high energy density has been
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discussed by Mace in reference [32] where similar findings are shown to apply for the SEA
ensemble, when the subsystem energy refers to the coupled system.

Equation (11a) has a kinetic energy that is larger in the receiving than in the excited
subsystem. This indicates that transmission from the excitation positions through the
excited subsystem is non-resonant when the EFCs are negative. In the two-subsystem case,
non-resonant transmission occurs when the system is forced to respond at frequencies
between well-separated (local) resonance frequencies of the excited subsystem. The excited
subsystem behaves as a spring or mass at these frequencies and transmits power from the
source to the joint. Figure 10(a) shows that the power input can be efficiently transmitted
through the excited subsystem when the frequency is close to a (local) eigenfrequency of
the receiving subsystem, as the excited subsystem is unable to accumulate more energy than
the receiving subsystem at this frequency. The power dissipation in the excited subsystem
is of course quite small when it is driven between well-separated eigenfrequencies: i.e., at

Figure 9. (a) Energy flow reciprocity function: ——, h21/h12, analytical model; – –, h21/h12, FE-computed; –·–,
n1/n2, asymptotic modal density ratio, equation (1). (b) Conditions for negative EFCs or EFCs of infinite
magnitude, equations 11(a, b): ——, kinetic energy ratio, R11/R21; –·–, kinetic energy ratio, R12/R22; – –, reciprocity
function, h21/h12. FE-computed results.
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frequencies where an anti-resonance occurs for the subsystem energy. Because the power
that is transmitted from subsystem 1 to the receiving subsystem 2 is accounted for in this
situation by the largest loss factor, h21, and the largest subsystem energy, E2, it is only
natural the EFC should take on a negative value. This type of transmission path is not
included in traditional SEA, and its influence is easily suppressed in the frequency band
integrated subsystem response, but not in the EFC because it reflects upon the magnitude
of the energy flow. The energy flow of the examined case is dominated by the above
mentioned non-resonant transmission mechanism.

Figures 10(b–d) show a case in which this type of transmission mechanism is important.
Figure 10(b) shows the two (local) mode shapes that have identical eigenfrequencies when
the plates are not coupled along the common edge. The two (local) eigenfrequencies, (w
and *), split in frequency when the plates become coupled. One mode’s eigenfrequency,
(×), is shifted upwards in frequency as it becomes constrained by the other plate. The other
mode remains at the original undamped eigenfrequency, (+), or is shifted upward in
frequency when subjected to the constraint that is imposed by the other plate, reference

Figure 10 (a and b) See caption opposite
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Figure 10 (c and d)

Figure 10. A case in which non-resonant excitation is important, FE-computed data. (a) The kinetic energy
of the L-shaped plate: ——, the (larger) excited plate; – –, the (smaller) receiving plate. The eigenfrequencies:
w, (local) of the smaller plate when uncoupled; *, (local) of the larger plate when uncoupled; +, ×, (global)
when the plates are coupled. (b) The (local) mode shapes when the plates are not coupled and one identical
(global) mode shape for the coupled case, eigenfrequency circa 100 Hz. (c) A (global) mode shape for the coupled
case, eigenfrequency circa 109 Hz. (d) The random response field when the larger plate is subjected to
rain-on-the-roof excitation.

[33]. Figure 10(c) shows the (global) modeshape (×) that is shifted upwards in frequency.
The other (global) modeshape (+) is identical to the (local) modeshapes (w and *) in
Figure 10(b), that remain at the original eigenfrequency when the plates are coupled along
the common edge. The non-resonant behaviour of the larger plate is important when
exciting in the larger plate, because energy can efficiently be transmitted to the receiving
(smaller) plate where a (local) mode can absorb it. The global mode shapes in Figure
10(b, c) interfere and produce a response field in the larger plate that is quite small when
it is subjected to rain-on-the-roof excitation. As depicted in Figure 10(d), energy flows from
low to high energy density in this situation. It is observed that increasing the level of
damping does not affect the shape of the (global) modes (of the mathematical model) in
Figure 10(b, c) and, thus, the above mentioned phenomenon can also be expected to apply
at high modal overlap. The above mentioned transmission mechanism cannot be included
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Figure 11. Variation of =h12= with excitation. (a) Different excitation positions: ——, rain-on-the-roof-exci-
tation; – –, –·–, two sets with three excitation points per subsystem. (b) Different number of excitation points:
——, rain-on-the-roof-excitation; – –, 20; –·–, 10; · · · , 6 excitation points per subsystem.

in SEA without excluding the assumption of modal incoherence, i.e., without utilizing
some form of phase information in the SEA model.

The SEA model is reliable only for the individual case when the modal density ratio
resembles the reciprocity function. Therefore, comparing the reciprocity function with the
asymptotic modal density ratio in the SEA model seems to be a reasonable test limit for
the transition from the deterministic energy flow approach to SEA, as was suggested for
experimental work in reference [34]. Figure 9(a) shows that the asymptotic modal density
ratio gives a reasonable estimate of the reciprocity function for frequencies at which the
modal overlap is larger than unity. The reciprocity function, h21/h12, and the asymptotic
modal density ratio, n1/n2, are observed to differ substantially at low frequency, in spite
of the closeness between the actual and asymptotic modal counts in Figure 2. Therefore,
assumptions that are valid in SEA should not be taken for granted without due
consideration taken to their underlying assumptions when analyzing the individual case.
Further, large fluctuations in the reciprocity function are exhibited at frequencies at which
a low modal overlap occurs and, in particular, at frequencies at which non-resonant
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transmission mechanisms are present. The above test forms an alternative to the modal
overlap and seems to be useful as a test limit for the importance of non-resonant behaviour
when combined with equations (11a, b) [35].

4.3.    

Rain-on-the-roof excitation is sometimes assumed to approximate to a modest number
of excitation points in each subsystem. Variations in the EFC estimates with excitation
position are shown in Figures 11(a, b) and demonstrate that the EFC is not the same when
different positions or a different number of points are used to excite the subsystems. The
results tend, as expected, towards the case of rain-on-the-roof excitation with an increasing
number of excitation points. Also, the EFCs in Figures 11(a, b) can be observed to be
biased in magnitude when a different number of excitation points are used. This bias

Figure 12. The energy flow from a source in subsystem 1. (a) Energy flow across the joint, P1:2: ——,
rain-on-the-roof; + + +, three points. (b) The EFC, =h12=, from the two sets of excitation positions. Number
of excitation positions in the receiving subsystem 2: ——, rain-on-the-roof; – –, 3 points.
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Figure 13. (a) Variation in =h12= with boundary conditions, rain-on-the-roof excitation: ——, all sides simply
supported; ––, simply supported joint and the other sides free-free. (b) Variations in =h12= with shape for six cases
with identical subsystem sizes of varying shape.

depends on the number of excitation positions that generate the subsystem coefficients in
equations (2) and (3).

Deviation between EFCs referring to a particular excitation or rain-on-the-roof
excitation does not imply that any of the derived EFCs are less valuable or more valid
than others, but simply that they apply for different cases. Thus, the energy flow for
rain-on-the-roof excitation is not predicted with EFCs from another case and, by analogy,
the energy flow for a particular source is not necessarily well described by the EFCs from
rain-on-the-roof excitation. As an example of the above, it is equally good to excite at a
single point as to excite with rain-on-the-roof excitation in the receiver subsystem when
gathering data to solve equation (4) and the (source) excitation of interest occurs in one
subsystem only. The energy flow from the source subsystem to the receiving subsystem is
naturally the same regardless of the excitation in the receiving subsystem, as long as the
source and the other excitation are independent. Figure 12(a, b) confirms that the identical
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Figure 14. Variation in the reciprocity function for the cases in Figure 13(b). ——, FE-computed; – –, SEA
values.

energy flow, P1:2, is assessed for the identical source when using EFCs derived from two
different sets of excitation points in the receiving plate, and that this transmission is
represented by two different sets of EFCs.

The EFCs, as opposed to the CLFs in SEA, are influenced by the subsystems’ shapes
and boundary conditions, which is confirmed in Figure 13(a, b), where the EFCs from two
cases of boundary conditions and various subsystem shapes are compared. The subsystems
are varied such that their respective area is constant and the distortion of the FE mesh
for skew, taper and aspect ratio is within the limits specified in reference [22]. A
characteristic trend that is similar to the CLF can be seen for the EFCs displayed at high

T 1

The table can be interpreted as follows. Statistical Energy Analysis is a statistical approach
that applies to ensembles and uses the Coupling Loss Factor to describe the flow of energy
between parts. SEA is applied at ‘‘high’’ frequency, uses concepts that are invariant to
geometry, etc., excludes explicit use of the non-resonant part of the subsystem energy and,
thus, normally excludes non-resonant transmission mechanisms. The SEAL approach is
deterministic, applies for the individual case and uses the Energy Flow Coefficient to describe
the flow of energy between parts. The SEAL approach is applicable at any frequency, uses
concepts that vary with geometry, etc., allows explicit use of the non-resonant part of the
subsystem energy and thus, automatically includes non-resonant transmission mechanisms

SEA SEAL

A statistical approach A deterministic approach
Ensembles The individual case
Coupling Loss Factor (CLF) Energy Flow Coefficient (EFC)
‘‘High’’ frequency Any frequency
Invariant to geometry, etc. Varies with geometry, etc.
Normally excludes non-resonant Includes non-resonant transmission mechanisms

transmission mechanisms
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frequency, although their behaviour is quite individual at low frequency. Two graphs in
Figure 13(b) have values at high frequency that are shifted in magnitude relative to the
other EFCs. These graphs refer to cases in which the subsystems have a tapered shape.
The junction length is changed with respect to the other cases for the tapered
configurations and, thus, the EFC is shifted upwards in magnitude for the longer and
downwards in magnitude for the shorter joint. Figure 14 shows the variation in reciprocity
function for the cases of Figure 13(b) where, again, a characteristic trend is observed at
high frequency with the individual behaviour at low frequency.

In summary, a list of aspects that differ between the statistical and deterministic energy
flow balances is shown in Table 1.

5. CONCLUSIONS

The possibility of combining the Finite Element method with an energy flow balance
for derivation of energy flow within a system has been demonstrated. A commercial Finite
Element code was used to derive the energy flow and its associated Energy Flow
Coefficients. Advantages of this approach are found in its versatility in dealing with
complicated subsystem topologies, complicated joints, sources with frequency spectra
containing narrow bands, non-resonant transmission mechanisms, the small number of
co-ordinates describing the energy flow and the simplicity in dealing with scalar quantities.
Application of a SEAL approach is suggested as a complement to existing methods for
the generation of input data for sections at which traditional SEA provides a poor
estimate. In addition, the SEAL approach can be used as a tool for testing the suitability
of conventional SEA for the individual case.

Use of this technique for the assessment of energy flow within a thin L-shaped plate was
compared with results from an analytical model. The inclusion of information concerning
the non-resonant behaviour in the energy flow model was shown to increase the applicable
frequency range to frequencies below the first eigenfrequency. Furthermore, it is concluded
that EFCs, as opposed to the CLFs in SEA, are case specific: i.e., dependent on the system
properties, boundary conditions and excitation. The existence of negative EFCs was
exemplified and demonstrated to occur when non-resonant transmission from the source
through the excited subsystem was substantial. Consequently, the classical heat analogy
is considered not to be applicable for direct interpretation of EFCs at frequencies at which
a low modal overlap exists.

Familiar results were obtained confirming the high frequency tendency of EFCs and the
reciprocity function to go towards the CLF and the asymptotic modal density ratio,
respectively. For SEA to work properly for the single case, the SEA reciprocity relationship
must resemble the derived reciprocity function reasonably well. Thus, it seems to be
possible to use a comparison of the asymptotic modal density ratio with the reciprocity
function as a test limit for the transition from the deterministic energy flow approach to
SEA. This test can represent an alternative to the modal overlap as a test limit for the
importance of non-resonant transmission and the non-resonant part of the subsystem’s
energy in the energy flow balance.
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